skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Amendano, Myleen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The relative contributions of trabecular (spongy) and cortical (compact) bone to bone strength and stiffness, although investigated in humans, is mostly unclear. As a result, we do not understand how the skeleton of small animals, especially the axial skeleton, has evolved to deal with the particular challenges of life at tiny size. In mammals, some small species have notably reduced their vertebral trabecular bone structure, resulting in mostly hollow medullary cavities. To assess the importance of trabecular structure to the mechanical properties of small mammalian vertebrae, and incorporate the effects of both trabecular and cortical bone structure, we conducted finite element analysis on the lumbar vertebrae of 15 species of shrews (Mammalia: Soricidae). We analyzed two sets of models: vertebrae with the trabecular structure intact, and vertebrae with all trabeculae excised from the centrum. In all models, the cranial end of the centrum was immobilized, and a 5N load was applied to the caudal end of the centrum, parallel to the craniocaudal axis. Results indicate higher peak stresses and larger displacements in models lacking trabeculae. Although smaller body size constrains the number of trabeculae that small mammals develop, we expect that these trabeculae contribute disproportionately to bone strength and stiffness. Ongoing work will validate these analyses with empirical materials testing and assess how bone morphofunctional characteristics change as body size increases. 
    more » « less